GHTM

Global Health and Tropical Medicine

  • GHTM
    • About GHTM
    • Governance
    • Impact
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Tech & Admin support
    • Scientific Advisory Board
    • Reports
      • GHTM
      • Scientific Advisory Board
      • FCT
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases
      • IHC – Individual health care
    • Research in numbers
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
  • Outreach
    • Events
    • News
    • Policy Support & Community Outreach
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
  • Capacity Building
    • Education
      • Master Theses
      • PhD Theses
    • International
  • Infrastructures
  • Networks & Partnerships
Home / Archives for Amaral L

New patentable use of an old neuroleptic compound thioridazine to combat tuberculosis: a gene regulation perspective.

  • Authors: Amaral L, Dastidar SG, Dutta NK, Karakousis PC, Mazumdar K
  • Journal: Recent Patents on Anti-Infective Drug Discovery
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=New+patentable+use+of+an+old+neuroleptic+compound+thioridazine+to+combat+tuberculosis%3A+a+gene+regulation+perspective

Use of the old antipsychotic phenothiazine thioridazine (THZ) for therapy of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) infection is now being seriously considered.
Read More

Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method.

  • Authors: Amaral L, Costa SS, Couto I, Fanning S, Martins M, Pacheco T, Pagès JM, Viveiros M
  • Journal: In vivo
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Identification+of+efflux+pump+mediated+multi-drug+resistant+bacteria+by+the+ethidium+bromide-agar+cartwheel+method

BACKGROUND/AIM:
Bacterial multidrug resistance may be mediated by the overexpression of efflux pumps. Conventional evaluation of efflux activity using efflux pump substrates, such as ethidium bromide, requires specialised instrumentation. The agar-based method, previously reported, has been modified to evaluate as many as twelve bacterial strains and has been termed the ethidium bromide-agar cartwheel method.
Read More

Antibacterial properties of compounds isolated from Carpobrotus edulis.

  • Authors: Amaral L, Hohmann J, Martins A, Molnar J, Vasas A, Viveiros M
  • Journal: International Journal of Antimicrobial Agents
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/21411294

Several compounds isolated from the plant Carpobrotus edulis were evaluated for their activity against multidrug-resistant (MDR) bacteria and their efflux pump systems.
Read More

Role of calcium in the efflux system of Escherichia coli.

  • Authors: Amaral L, Cerca P, Costa S, Machado L, Martins A, Spengler G, Viveiros M
  • Journal: International Journal of Antimicrobial Agents
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Role+of+calcium+in+the+efflux+system+of+Escherichia+coli.

Efflux of antibiotics by Escherichia coli AG100 is performed by a variety of efflux pumps, ensuring survival of the bacterium in widely diverse media. At pH 5, efflux is independent of metabolic energy during the period of time the assay is conducted; at pH 8 it is totally dependent upon metabolic energy.
Read More

Genetic response of Salmonella enterica serotype Enteritidis to thioridazine rendering the organism resistant to the agent.

  • Authors: Amaral L, Cerca P, Costa SS, Couto I, Fanning S, Machado L, Martins A, Martins M, McCusker M, Molnar J, Ntokou E, Rodrigues L, Spengler G, Viveiros M
  • Journal: International Journal of Antimicrobial Agents
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Genetic+response+of+Salmonella+enterica+serotype+Enteritidis+to+thioridazine+rendering+the+organism+resistant+to+the+agent

Thioridazine (TZ)-induced accumulation of the universal efflux pump substrate ethidium bromide and its subsequent efflux by Salmonella strains with various degrees of overexpressed efflux pumps takes place automatically at pH 7.4, is independent of a metabolic source, is not affected by a proton ionophore and is precluded by palmitic acid.
Read More

  • « Previous Page
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 12
  • Next Page »

About GHTM

GHTM is a R&D Unit that brings together researchers with a track record in Tropical Medicine and International & Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal

+351 213 652 600

  • E-mail
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Map

  • Events
  • Research Groups
  • Cross-cutting issues
© Copyright 2025 IHMT-UNL All Rights Reserved.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok