GHTM

Global Health and Tropical Medicine

  • GHTM
    • About GHTM
    • Governance
    • Impact
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Tech & Admin support
    • Scientific Advisory Board
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases
      • IHC – Individual health care
    • Research in numbers
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
  • Outreach
    • Events
    • News
    • Policy Support & Community Outreach
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
  • Capacity Building
    • Education
      • Master Theses
      • PhD Theses
    • International
  • Infrastructures
  • Networks & Partnerships
  • Reports
    • GHTM
    • Scientific Advisory Board
    • FCT
Home / Archives for Amaral L

Possible Biological and Clinical Applications of Phenothiazines

  • Authors: Amaral L, Csonka Á, Molnar J, Spengler G, Varga B
  • Publication Year: 2017
  • Journal: Anticancer Research
  • Link: https://www.ncbi.nlm.nih.gov/pubmed/29061777

Phenothiazines have been used in many areas of medicine, mainly in psychopharmacology. These compounds are able to effectively inhibit dopamine, histamine, serotonin, acetylcholine, and α-adrenergic receptors; thus, their effect and side-effect profiles are extremely diverse. Besides their antipsychotic activity, phenothiazines have a significant antimicrobial effect as well, since they can enhance the bactericidal function of macrophages and inhibit efflux pumps. They are also able to eliminate bacterial resistance plasmids and destroy bacteria by their membrane-destabilizing effect. Their antiviral, antiprotozoal, antifungal, and antiprion activities have also been described. Phenothiazines have also been proven to destroy cancer cells and sensitize them to chemotherapy. Anti-angiogenesis and anticancer stem cell activities have also been reported, and they might be applied as adjuvants in the treatment of infections and tumors in the future. Finally, phenothiazines can also be effective in the treatment of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease.
Read More

New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

  • Authors: Amaral L, Gajdács M, Kincses A, Spengler G
  • Publication Year: 2017
  • Journal: Molecules
  • Link: https://www.ncbi.nlm.nih.gov/pubmed/28294992

Multidrug resistance (MDR) has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR […]
Read More

A non-antibiotic drug highly effective, in combination with first line anti-tuberculosis drugs, against any form of antibiotic resistance of Mycobacterium tuberculosis due to its multi-mechanisms of action

  • Authors: Amaral L, Viveiros M
  • Publication Year: 2017
  • Journal: Antibiotics
  • Link: http://www.mdpi.com/2079-6382/6/1/3

This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as […]
Read More

Fluorimetric methods for analysis of permeability, drug transport kinetics, and inhibition of the ABCB1 membrane transporter

  • Authors: Amaral L, Armada A, Martins C, Molnar J, Rodrigues AS, Spengler G, Viveiros M
  • Publication Year: 2016
  • Journal: Cancer Drug Resistance
  • Link: https://link.springer.com/protocol/10.1007%2F978-1-4939-3347-1_7%20

The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in […]
Read More

Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis.

  • Authors: Amaral L, Baptista P, Couto I, Machado D, Perdigão J, Portugal I, Rodrigues L, Veigas B, Viveiros M
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/?term=Contribution+of+Efflux+to+the+Emergence+of+Isoniazid+and+Multidrug+Resistance+in+Mycobacterium+tuberculosis

Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype.
Read More

  • 1
  • 2
  • 3
  • …
  • 12
  • Next Page »

About GHTM

GHTM is a R&D Unit that brings together researchers with a track record in Tropical Medicine and International & Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal

+351 213 652 600

  • E-mail
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Map

  • Events
  • Research Groups
  • Cross-cutting issues
© Copyright 2025 IHMT-UNL All Rights Reserved.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok