GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Quinolone-Hydroxyquinoline Tautomerism in Quinolone 3-Esters. Preserving the 4-Oxoquinoline Structure To Retain Antimalarial Activity

Quinolone-Hydroxyquinoline Tautomerism in Quinolone 3-Esters. Preserving the 4-Oxoquinoline Structure To Retain Antimalarial Activity

  • Autores: Coelho L, Cristiano MLS, Fausto R, Henriques MS, Horta P, Kuş N, Nogueira F, O'Neill PM, Paixão JA
  • Ano de Publicação: 2015
  • Journal: Journal of Organic Chemistry
  • Link: https://pubs.acs.org/doi/10.1021/acs.joc.5b02169%20

Recent publications report in vitro activity of quinolone 3-esters against the bc1 protein complex of Plasmodium falciparum and the parasite. Docking studies performed in silico at the yeast Qo site established a key role for the 4-oxo and N-H groups in drug-target interactions. Thus, the possibility of 4-oxoquinoline/4-hydroxyquinoline tautomerism may impact in pharmacologic profiles and should be investigated. We describe the synthesis, structure, photochemistry, and activity against multidrug-resistant P. falciparum strain Dd2 of ethyl 4-oxo-7-methylquinoline-3-carboxylate (7Me-OQE) and ethyl 4-hydroxy-5-methylquinoline-3-carboxylate (5Me-HQE), obtained from diethyl 2-[((3-methylphenyl)amino)methylene]malonate. Theoretically (B3LYP/6-311++G(d,p)), 5Me-HQE and 7Me-OQE show clear preference for the hydroxyquinoline form. The difference between the lowest energy hydroxyquinoline and quinolone forms is 27 and 38 kJ mol(-1), for 5Me-HQE and 7Me-OQE, respectively. Calculations of aromaticity indexes show that in 5Me-HQE both rings are aromatic, while in the corresponding oxo tautomers the nitrogen-containing ring is essentially non-aromatic. The structure of monomeric 5Me-HQE was studied using matrix isolation coupled to FTIR spectroscopy. No traces of 4-oxoquinoline tautomers were found in the experimental IR spectra, revealing that the species present in the crystal, 5Me-HQE·HCl, was lost HCl upon sublimation but did not tautomerize. Continuous broadband irradiation (λ > 220 nm; 130 min) of the matrix led to only partial photodecomposition of 5Me-HQE (ca. 1/3).

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

“Python Applied to Biomedical Sciences course allowed students to understand the applications of this programming language”

  The first edition of the course "Python Applied to Biomedical Sciences" was organized and … [Read More...]

Status of COVID-19 Transmission in Secondary Schools in Europe – First results and evidence gathered within the framework of the European EUCARE project with the participation of GHTM

EUCARE Project – Status of COVID-19 Transmission in Secondary Schools in Europe – First results and … [Read More...]

Members of PPS-GHTM Research Group attended the 17th World Congress on Public Health

  Researchers, Master and PhD students from the PPS-GHTM Research Group attended the 17th … [Read More...]

Erasmus+: IHMT-NOVA welcomes two researchers from the University of Cape Verde

IHMT-NOVA welcomes two researchers from the University of Cape Verde. Between 5th and 9th of June, … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013