GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Probing the aurone scaffold against Plasmodium falciparum: design, synthesis and antimalarial activity

Probing the aurone scaffold against Plasmodium falciparum: design, synthesis and antimalarial activity

  • Autores: Carrasco MP, dos Santos DJ, Gois A, Gonçalves L, Guedes RC, Gut J, Hänscheid T, Machado M, Moreira R, Newton AS, Nogueira F, Rosenthal PJ
  • Ano de Publicação: 2014
  • Journal: European Journal of Medicinal Chemistry
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/24813880

A library comprising 44 diversely substituted aurones derivatives was synthesized by straightforward aldol condensation reactions of benzofuranones and the appropriately substituted benzaldehydes. Microwave enhanced synthesis using palladium catalyzed protocols was introduced as a powerful strategy for extending the chemical space around the aurone scaffold. Additionally, Mannich-base derivatives, containing a 7-aminomethyl-6-hydroxy substitution pattern at ring A, were also prepared. Screening against the chloroquine resistant Plasmodium falciparum W2 strain identified novel aurones with IC50 values in the low micromolar range.

The most potent compounds contained a basic moiety, with the ability to accumulate in acidic digestive vacuole of the malaria parasite. However, none of those aurones revealed significant activity against hemozoin formation and falcipain-2, two validated targets expressed during the blood stage of P. falciparum infection and functional in digestive vacuole of the parasite. Overall, this study highlight (i) the usefulness of aurones as platforms for synthetic procedures using palladium catalyzed protocols to rapidly deliver lead compounds for further optimization and (ii) the potential of novel aurone derivatives as promising antimalarial compounds.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

NOVA Sciencepreneur program: registration is open

  The Sciencepreneur ® program is aimed at NOVA scientists who are seeking to create value … [Read More...]

IHMT selected for the pilot phase of the Research Data Repository Service of the FCT

  In order to promote good practices in Open Science with regard to research data and … [Read More...]

Paulo Ferrinho interviewed for the new e-magazine of European and Developing Countries Clinical Trials Partnership (EDCTP)

Paulo Ferrinho, professor and Diretor of Public Global Health Departament at the Instituto de … [Read More...]

How can we improve the environmental performance of our laboratories?

  Every day in NOVA's laboratories research is carried out with the consumption of numerous … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013