GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
    • 2023
    • 2022
  • Education
    • Master Theses
    • PhD Theses
  • Services
  • Reports
    • GHTM Reports
    • Scientific Advisory Board Reports
Home / Publicações / On the ordeal of quinolone preparation via cyclisation of aryl-enamines; Synthesis and structure of ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)-quinoline-3-carboxylate

On the ordeal of quinolone preparation via cyclisation of aryl-enamines; Synthesis and structure of ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)-quinoline-3-carboxylate

  • Autores: Brás EM, Cristiano MLS, Fausto R, Henriques MSC, Horta P, Murtinheira F, Nogueira F, O'Neill PM, Paixão JA
  • Ano de Publicação: 2017
  • Journal: Pure and Applied Chemistry
  • Link: https://www.degruyter.com/view/j/pac.2017.89.issue-6/pac-2016-1119/pac-2016-1119.xml

Recent studies directed to the design of compounds targeting the bc1 protein complex of Plasmodium falciparum, the parasite responsible for most lethal cases of malaria, identified quinolones (4-oxo-quinolines) with low nanomolar inhibitory activity against both the enzyme and infected erythrocytes. The 4-oxo-quinoline 3-ester chemotype emerged as a possible source of potent bc1 inhibitors, prompting us to expand the library of available analogs for SAR studies and subsequent lead optimization. We now report the synthesis and structural characterization of unexpected ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)-quinoline-3-carboxylate, a 4-aryloxy-quinoline 3-ester formed during attempted preparation of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate (4-oxo-quinoline 3-ester). We propose that the 4-aryloxy-quinoline 3-ester derives from 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate (4-hydroxy-quinoline 3-ester), the enol form of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate. Formation of the 4-aryloxy-quinoline 3-ester confirms the impact of quinolone/hydroxyquinoline tautomerism, both on the efficiency of synthetic routes to quinolones and on pharmacologic profiles. Tautomers exhibit different cLogP values and interact differently with the enzyme active site. A structural investigation of 6-methyl-7-iodo-4-oxo-quinoline-3-carboxylate and 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate, using matrix isolation coupled to FTIR spectroscopy and theoretical calculations, revealed that the lowest energy conformers of 6-methyl-7-iodo-4-hydroxy-quinoline-3-carboxylate, lower in energy than their most stable 4-oxo-quinoline tautomer by about 27 kJ mol−1, are solely present in the matrix, while the most stable 4-oxo-quinoline tautomer is solely present in the crystalline phase.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

Retention in Care and Virological Failure among Adult HIV-Positive Patients on First-Line Antiretroviral Treatment in Maputo, Mozambique

    “Retention in Care and Virological Failure among Adult HIV-Positive Patients … [Read More...]

European Researchers’ Night 2023: join GHTM researchers to play ‘Hunt for viruses’

  On 29th September, the European Researchers Night reunite Portuguese researchers from all … [Read More...]

Carla Maia awarded by the Journal of Comparative Pathology Education Trust

  Carla Maia, Assistant Researcher and member of VBD-GHTM Research Group, was invited to … [Read More...]

Ciência Viva 2023: “PSI Parasite Scene Investigation – Be a Researcher for a week”

  “PSI Parasite Scene Investigation - Be a Researcher for a week” was the GHTM-IHMT … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013