GHTM

Global Health and Tropical Medicine

  • GHTM
    • About GHTM
    • Governance
    • Impact
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Tech & Admin support
    • Scientific Advisory Board
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases
      • IHC – Individual health care
    • Research in numbers
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
  • Outreach
    • Events
    • News
    • Policy Support & Community Outreach
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
  • Capacity Building
    • Education
      • Master Theses
      • PhD Theses
    • International
  • Infrastructures
  • Networks & Partnerships
  • Reports
    • GHTM
    • Scientific Advisory Board
    • FCT
Home / Publications / N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity

N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity

  • Authors: Albuquerque I, Gomes A, Gomes P, Machado M, Nogueira F, Perez B, Prudencio M, Teixeira C
  • Publication Year: 2014
  • Journal: Chemmedchem
  • Link: https://www.ncbi.nlm.nih.gov/pubmed/24474655

Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future “rise of a fallen angel” in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads.

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to print (Opens in new window) Print

About GHTM

GHTM is a R&D Unit that brings together researchers with a track record in Tropical Medicine and International & Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal

+351 213 652 600

  • E-mail
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Map

  • Events
  • Research Groups
  • Cross-cutting issues
© Copyright 2025 IHMT-UNL All Rights Reserved.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok