GHTM

Global Health and Tropical Medicine

  • GHTM
    • About GHTM
    • Governance
    • Impact
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Tech & Admin support
    • Scientific Advisory Board
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases
      • IHC – Individual health care
    • Research in numbers
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
  • Outreach
    • Events
    • News
    • Policy Support & Community Outreach
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
  • Capacity Building
    • Education
      • Master Theses
      • PhD Theses
    • International
  • Infrastructures
  • Networks & Partnerships
  • Reports
    • GHTM
    • Scientific Advisory Board
    • FCT
Home / Publications / Efflux Pumps in Mycobacteria: Antimicrobial Resistance, Physiological Functions, and Role in Pathogenicity

Efflux Pumps in Mycobacteria: Antimicrobial Resistance, Physiological Functions, and Role in Pathogenicity

  • Authors: Almeida da Silva PE, Couto I, Machado D, Ramos D, Viveiros M, von Groll A
  • Publication Year: 2016
  • Journal: Efflux-Mediated Antimicrobial Resistance in Bacteria
  • Link: https://link.springer.com/chapter/10.1007/978-3-319-39658-3_21%20

The emergence of multidrug and extensively drug-resistant tuberculosis represents a major threat to the control of the disease. Antimicrobial drug resistance in Mycobacterium tuberculosis is not merely a consequence of the occurrence of gene mutations in the drug targets but a balance between the acquisition of mutations and drug efflux. The low permeability of the mycobacterial cell wall acts synergistically with active drug efflux pumps, and this combined mechanism may particularly constitute the first step for the development of drug resistance. Besides drug efflux, efflux pumps also have physiological functions in the bacteria, and their expression is subjected to tight regulation in response to multiple environmental and physiological signals. Understanding the mechanisms underlying drug efflux, efflux pump regulation and their contribution for pathogenicity not only enables the development of more rapid and accurate tools for the guidance of antituberculosis therapy but also provides knowledge for the development of new therapeutic strategies.

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to print (Opens in new window) Print

About GHTM

GHTM is a R&D Unit that brings together researchers with a track record in Tropical Medicine and International & Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal

+351 213 652 600

  • E-mail
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Map

  • Events
  • Research Groups
  • Cross-cutting issues
© Copyright 2025 IHMT-UNL All Rights Reserved.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok