GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals.

Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals.

  • Autores: Fanning S, Karczmarczyk M, Leonard N, Martins M, Quinn T
  • Journal: Applied and Environmental Microbiology
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/21856834

Eleven multidrug-resistant Escherichia coli isolates (comprising 6 porcine and 5 bovine field isolates) displaying fluoroquinolone (FQ) resistance were selected from a collection obtained from the University Veterinary Hospital (Dublin, Ireland). MICs of nalidixic acid and ciprofloxacin were determined by Etest. All showed MICs of nalidixic acid of >256 μg/ml and MICs of ciprofloxacin ranging from 4 to >32 μg/ml. DNA sequencing was used to identify mutations within the quinolone resistance-determining regions of target genes, and quantitative real-time PCR (qRT-PCR) was used to evaluate the expression of the major porin, OmpF, and component genes of the AcrAB-TolC efflux pump and its associated regulatory loci. Decreased MIC values to nalidixic acid and/or ciprofloxacin were observed in the presence of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) in some but not all isolates. Several mutations were identified in genes coding for quinolone target enzymes (3 to 5 mutations per strain). All isolates harbored GyrA amino acid substitutions at positions 83 and 87. Novel GyrA (Asp87 → Ala), ParC (Ser80 → Trp), and ParE (Glu460 → Val) substitutions were observed. The efflux activity of these isolates was evaluated using a semiautomated ethidium bromide (EB) uptake assay. Compared to wild-type E. coli K-12 AG100, isolates accumulated less EB, and in the presence of PAβN the accumulation of EB increased. Upregulation of the acrB gene, encoding the pump component of the AcrAB-TolC efflux pump, was observed in 5 of 11 isolates, while 10 isolates showed decreased expression of OmpF. This study identified multiple mechanisms that likely contribute to resistance to quinolone-based drugs in the field isolates studied.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

IHMT selected for the pilot phase of the Research Data Repository Service of the FCT

  In order to promote good practices in Open Science with regard to research data and … [Read More...]

Paulo Ferrinho interviewed for the new e-magazine of European and Developing Countries Clinical Trials Partnership (EDCTP)

Paulo Ferrinho, professor and Diretor of Public Global Health Departament at the Instituto de … [Read More...]

How can we improve the environmental performance of our laboratories?

  Every day in NOVA's laboratories research is carried out with the consumption of numerous … [Read More...]

PhD student from GHTM attended the India|EMBO Lecture Course

Ronise Silva, a PhD student under the Tropical Diseases and Global Health program at the Institute … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013