GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Insights on the mechanism of action of INH-C10 as an antitubercular prodrug

Insights on the mechanism of action of INH-C10 as an antitubercular prodrug

  • Autores: Leitão R, Loewen PC, Machado D, Machuqueiro M, Martins F, Ramos J, Switala J, Victor BL, Vila-Viçosa D
  • Ano de Publicação: 2017
  • Journal: Molecular pharmaceutics
  • Link: https://www.ncbi.nlm.nih.gov/pubmed/29091448

Tuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N’-acylated INH derivative with a long alkyl chain (INH-C10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N’-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl-NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s-1), compared with INH-C2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (S315T and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

IHMT selected for the pilot phase of the Research Data Repository Service of the FCT

  In order to promote good practices in Open Science with regard to research data and … [Read More...]

Paulo Ferrinho interviewed for the new e-magazine of European and Developing Countries Clinical Trials Partnership (EDCTP)

Paulo Ferrinho, professor and Diretor of Public Global Health Departament at the Instituto de … [Read More...]

How can we improve the environmental performance of our laboratories?

  Every day in NOVA's laboratories research is carried out with the consumption of numerous … [Read More...]

PhD student from GHTM attended the India|EMBO Lecture Course

Ronise Silva, a PhD student under the Tropical Diseases and Global Health program at the Institute … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013