GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Hemozoin activates the innate immune system and reduces Plasmodium berghei infection in Anopheles gambiae

Hemozoin activates the innate immune system and reduces Plasmodium berghei infection in Anopheles gambiae

  • Autores: Gonçalves L, Silveira H, Simoes ML
  • Ano de Publicação: 2015
  • Journal: Parasites & Vectors
  • Link: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-014-0619-y

Malaria is a worldwide infectious disease caused by Plasmodium parasites and transmitted by female Anopheles mosquitoes. The malaria vector mosquito Anophelescan trigger effective mechanisms to control completion of the Plasmodium lifecycle; the mosquito immune response to the parasite involves several pathways which are not yet well characterized. Plasmodium metabolite hemozoin has emerged as a potent immunostimulator of mammalian tissues. In this study, we aim to investigate the role of this parasite’s by-product as stimulator of Anopheles gambiae immunity to Plasmodium berghei.

Female mosquitoes were inoculated with hemozoin and the Plasmodium infection rate and intensity were measured. Differences between treatments were detected by Zero-inflated models. Microarray transcription analysis was performed to assess gene expression response to hemozoin. Genome-wide analysis results were confirmed by stimulation of Anopheles gambiae tissues and cells with hemozoin and silencing of REL2-F and its negative regulator Caspar.

Gene expression profiles revealed that hemozoin activates several immunity genes, including pattern recognition receptors (PRRs) and antimicrobial peptides (AMPs). Importantly, we found that the Immune deficiency (Imd) pathway Nuclear Factor-kappaB (NF-κB) transcription factor REL2, in its full-length form REL2-F, was induced upon hemozoin treatment.

We have for the first time shown the impact of hemozoin treatment in Plasmodiuminfection, reducing both rate and intensity of the infection. We propose that hemozoin boosts the innate immunity in Anopheles, activating key effector genes involved in mosquito resistance to Plasmodium, and this activation is REL2-mediated.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

NOVA Sciencepreneur program: registration is open

  The Sciencepreneur ® program is aimed at NOVA scientists who are seeking to create value … [Read More...]

IHMT selected for the pilot phase of the Research Data Repository Service of the FCT

  In order to promote good practices in Open Science with regard to research data and … [Read More...]

Paulo Ferrinho interviewed for the new e-magazine of European and Developing Countries Clinical Trials Partnership (EDCTP)

Paulo Ferrinho, professor and Diretor of Public Global Health Departament at the Instituto de … [Read More...]

How can we improve the environmental performance of our laboratories?

  Every day in NOVA's laboratories research is carried out with the consumption of numerous … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013