GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Development of mathematical models for the analysis of hepatitis delta virus viral dynamics

Development of mathematical models for the analysis of hepatitis delta virus viral dynamics

  • Autores: Cunha C, de Sousa BC
  • Journal: PLoS One
  • Link: http://www.ncbi.nlm.nih.gov/pubmed/20862328

BACKGROUND:
Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection.

METHODOLOGY/PRINCIPAL FINDINGS:
In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV.

CONCLUSIONS/SIGNIFICANCE:
The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

NOVA Sciencepreneur program: registration is open

  The Sciencepreneur ® program is aimed at NOVA scientists who are seeking to create value … [Read More...]

IHMT selected for the pilot phase of the Research Data Repository Service of the FCT

  In order to promote good practices in Open Science with regard to research data and … [Read More...]

Paulo Ferrinho interviewed for the new e-magazine of European and Developing Countries Clinical Trials Partnership (EDCTP)

Paulo Ferrinho, professor and Diretor of Public Global Health Departament at the Instituto de … [Read More...]

How can we improve the environmental performance of our laboratories?

  Every day in NOVA's laboratories research is carried out with the consumption of numerous … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013