GHTM

Global Health and Tropical Medicine

  • GHTM
    • About GHTM
    • Governance
    • Impact
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Tech & Admin support
    • Scientific Advisory Board
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases
      • IHC – Individual health care
    • Research in numbers
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
      • Completed Projects
  • Outreach
    • Events
    • News
    • Policy Support & Community Outreach
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
  • Capacity Building
    • Education
      • Master Theses
      • PhD Theses
    • International
  • Infrastructures
  • Networks & Partnerships
  • Reports
    • GHTM
    • Scientific Advisory Board
    • FCT
Home / Publications / The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates

The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates

  • Authors: Baele G, Derdelinckx I, Drummond A, Lemey P, Rambaut A, Suchard MA, Van Laethem K, Van Wijngaerden E, Vandamme AM, Vrancken B
  • Publication Year: 2014
  • Journal: PLoS Computational Biology
  • Link: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003505

Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

About GHTM

GHTM is a R&D Unit that brings together researchers with a track record in Tropical Medicine and International & Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal

+351 213 652 600

  • E-mail
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Map

  • Events
  • Research Groups
  • Cross-cutting issues
© Copyright 2025 IHMT-UNL All Rights Reserved.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    UIDB/04413/2020
    UIDP/04413/2020

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok