GHTM

Global Health and Tropical Medicine

  • GHTM
    • Vision
    • Mission
    • Governance
    • Scientific Advisory Board
  • News
    • Outreach
    • Events
      • GHTM Sessions
      • Workshops
    • Articles
    • Jobs
  • Research
    • Cross-cutting issues
      • Global Pathogen Dispersion and Population Mobility
      • Drug Discovery and Drug Resistance
      • Diagnostics
      • Public Health Information
      • Fair Research Partnerships
    • Research Groups
      • PPS – Population health, policies and services
      • THOP – TB, HIV and opportunistic diseases and pathogens
      • VBD – Vector borne diseases and pathogens
      • IHC – Individual health care
    • Research in numbers
      • 2020
      • 2019
      • 2018
      • 2017
    • Projects
      • Ongoing Projects
    • Members
      • Population health, policies and services
        • PPS PhD members
        • PPS non PhD members
      • TB, HIV and opportunistic diseases and pathogens
        • THOP PhD members
        • THOP non PhD members
      • Vector-borne diseases and pathogens
        • VBD PhD members
        • VBD non PhD members
      • Individual Health Care
        • IHC PhD members
        • IHC non PhD members
      • Technical / administrative support
  • Publications
  • Education
    • Master Theses
    • PhD Theses
  • Services
Home / Publicações / Antimicrobial action of ozone gas on surfaces and in the air

Antimicrobial action of ozone gas on surfaces and in the air

  • Autores: Maicon Henrique Caetano, João Paulo Zen Siqueira, Denise de Andrade, Álvaro Francisco Lopes de Sousa, Marcelo Alessandro Rigotti, Maiara Oliveira Diniz, Willian Albuquerque de Almeida, Adriano Menis Ferreira, Margarete Teresa Gottardo de Almeida
  • Ano de Publicação: 2021
  • Journal: ACTA Paulista de Enfermagem, 34, eAPE02712
  • Link: https://doi.org/10.37689/acta-ape/2021AO02712

ABSTRACT

‘Objective:’

Assess the antimicrobial action of ozone gas (O3) on surfaces and artificially cooled ambient air.

‘Methods:’

Cross-sectional experimental/laboratory study carried out in ten rooms of a medical microbiology research lab, with class 2 biosafety risk. The demarcated surfaces on the floor, wall and counter were assessed in relation to the presence or absence of microorganisms, based on collections done with swabs dampened in sterile distilled water, before and after exposure to ozone gas produced by two different generators. After this procedure, each swab was inoculated on the surface of a Brain Heart Infusion Agar DIFCO® (BHI) culture, followed by incubation at 35ºC for 24 hours. For the microbiological analysis of the air, a petri dish with BHI was openly exposed for one hour, before and after treatment with O3 gas, and were incubated according to the same criteria.

‘Results:’

The antimicrobial activity of the O3 gas produced by both generators was checked in all the areas investigated, with records indicating a decrease in the number of colony-forming units. The antimicrobial inhibition potential of the generators was close to the analysis criteria adopted, particularly for the floor and counter areas. Based on all the rooms and microbial inhibition percentages, in relation to the two generators, the results were: floor (100%), counter (90%), wall (50%) and air (70%).

‘Conclusions:’

The O3 generators had antimicrobial potential as a procedure for controlling microorganisms present on surfaces and in artificially cooled ambient air, constituting a feasible sanitizer.

 

Keywords:

Air pollution; Anti-infective agents; Disinfection; indoor; Ozonation; Ozone; Products with antimicrobial action.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to print (Opens in new window)

Events

PhD student from GHTM attended the India|EMBO Lecture Course

Ronise Silva, a PhD student under the Tropical Diseases and Global Health program at the Institute … [Read More...]

Registration for “Python applied to Biomedical Sciences” course is open!

GHTM informs that registration for the introduction course on Python programming language is … [Read More...]

BIOTROP, the biobank of GHTM-IHMT-NOVA, represented at the inauguration of the European headquarters of MIRRI-ERIC

  The Coordinator of the Biotropical Resources biobank (BIOTROP), Ana Paula Arez, and the … [Read More...]

Ciara O’Sullivan visited GHTM-IHMT and strengthened international relationship

  As part of the RESMALDETECT Exploratory Project, the GHTM-IHMT received a visit from Ciara … [Read More...]

Call for PhD Studentships

The Institute of Hygiene and Tropical Medicine (IHMT), Universidade Nova de Lisboa (NOVA), through … [Read More...]

IHMT | GHTM – APPLICATIONS ARE OPEN!

IHMT | GHTM - Applications are open for three research vacancies:   One position - PhD … [Read More...]

About GHTM

GHTM is a R&D Center that brings together researchers from IHMT with a track record in Tropical Medicine and International/Global Health. It aims at strengthening Portugal's role as a leading partner in the development and implementation of a global health research agenda. Our evidence-based interventions contribute to the promotion of equity in health and to improve the health of populations.

Contacts

Rua da Junqueira, 100
1349-008 Lisboa
Portugal
+351 213 652 600
+351 213 632 105

  • Facebook
  • YouTube

Subscribe Newsletter

  • How to get to GHTM/IHMT
  • GHTM Sessions
  • Research Groups
  • Cross-cutting issues
© Copyright 2023 IHMT-UNL Todos os Direitos Reservados.
  • Universidade Nova de Lisboa
  • Fundação para a Ciência e a Tecnologia

    Project UID/Multi/04413/2013